《比的应用》教学设计

时间:2024-07-13 20:17:15
《比的应用》教学设计

《比的应用》教学设计

作为一名教职工,时常需要用到教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。那要怎么写好教学设计呢?下面是小编精心整理的《比的应用》教学设计,仅供参考,希望能够帮助到大家。

《比的应用》教学设计1

教学目标:

1、知识与技能:在解决实际问题时,能根据实际情况采用“进一法”或“去尾法”取商的近似值。

2、过程与方法:根据实际情况,独立完成学习任务。

3、情感、态度与价值观:让学生通过采用“进一法”或“去尾法”取商的近似值,感受这些方法的现实意义。

教学重、难点:能根据实际情况选择合适的方法取商的近似值解决生活问题。

教具准备:多媒体课件、计算器。

教学过程:

一、复习铺垫。

1、体育室花19.4元买来一筒羽毛球,每筒12个,平均每个多少元?

(1)学生独立解答。

(2)汇报讲评:根据你的生活经验,算钱时可以保留几位小数,为什么?

2、引入:我们在解决实际问题时,要根据实际情况取商的近似值。(板书课题)

二、探索新知。

1、学习例12(1)

(1)出示题目:小强的妈妈要将2.5千克香油分装在一些玻璃瓶里,每个瓶最多可盛0.4千克,需要准备几个瓶?

(2)学生读题理解题意,独立列式计算。

(3)汇报:2.5÷0.4=6.25(个)

(4)设疑:我们算到的结果是6.25个瓶,那在我们的生活中能找到6.25个瓶子吗?根据你的生活经验,这里求“需要准备几个瓶?”得数应该保留什么数?

(5)小组讨论:根据实际情况,这里需要准备几个瓶?为什么?

(6)学生汇报讨论情况。

(7)演示多媒体课件,验证结果。

边演示课件,边提问:如果是用我们以前的“四舍五入法”取近似数,就需要准备几个瓶子?能装得下2.5千克的香油吗?6个瓶子只能装多少千克香油?所以要准备几个瓶子?

(8)小结:在这道题里,应用我们以前学习的用“四舍五入法”取近似值,能解决问题吗?在这种情况下,出现了不满5也需要向前一位进1,这种方法我们把它叫做“进一法”。

(9)在我们的日常生活中,有像这样的情况吗?请你说一说。

2、填一填

(1)五年级有210个同学,需租车到东莞参观学习,每辆车最多可坐40人,需要租几辆车?

列式为:210÷40=5.25≈( )辆应用( )法取近似值。

(2)把一包150千克的大米平均分成每袋40千克,需要准备几个袋子?

列式为:150÷40=3.75≈( )个应用( )法取近似值。

3、学习例12(2)

(1)出示题目:王阿姨用一根25米长的红丝带包装礼盒。每个礼盒要用1.5米长的丝带,这些红丝带可以包装几个礼盒?

(2)要求这个问题,要用什么方法列式?怎样列?

(3)思考:①根据你的生活经验,要求“这些红丝带可以包装几个礼盒?”,得数应保留什么数?

②如果用“四舍五入法”或“进一法”取近似值,结果是多少?这些丝带够吗?那么这些丝带可以包装几个礼盒?

(4)小结:在这道题里,出现了满5也要把尾数舍去的情况,我们把这种取近似值的方法叫做“去尾法”。

(5)在我们的生活中,有像这样的情况吗?请你说一说。

4、选一选

(1)做一套衣服要用布2.5m,现有30.5m的布,可以做多少套这样的衣服?列式为:()

A、30.5÷2.5=12.2≈12(套)B、30.5÷2.5=12.2≈13(套)

(2)同学们把75.5厘米的纸条按每6厘米裁成一段做圆环,这个纸条最多能做成几个圆环?列式为:()

A、75.5÷6=12.58≈13(个)B、75.5÷6=12.58≈12(个)

5、学生看书本P33的内容,质疑。

6、小结:在解决实际问题时,我们有的时候用“四舍五入法”取近似值,也有的时候用“进一法”或“去尾法”取近似值,总之我们要根据实际情况选择合适的方法取商的近似值。

三、练习提高。

1、P33“做一做”的题目。

2、P35第7题。

3、大家今天的表现真不错,现在老师给大家介绍个漂亮的地方。(出示漂亮的桂林山水的风景)这么美的地方,你想去游览吗?这里有一种既开心刺激又经济实惠的游览方式——“乘坐竹筏游漓江”。请看:(1)一个竹筏一天租金220元,可乘6人。根据这些信息,你能提出什么数学问题?(提出问题后,学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

(2)我们班有47人,准备乘坐竹筏游漓江,已知每个竹筏可乘6人,得租几个竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

(3)同学们,朴实的桂林人民用自己勤劳的双手建造出一个个精美的竹筏,为桂林的旅游事业争光添彩。我还了解到了一个信息:做一个竹筏需要10根竹子,请问96根符合要求的竹子能做几个这样的竹筏?(学生列式解答,讲评时让学生说说这里用了什么方法取近似值,为什么。)

(4)对学生进行环保教育。

四、全课总结。

同学们,没想到吧,在愉快的旅游之中随处都可以见到数学,由此可见,数学就在我们身边。通过今天的学习,你学到了什么知识?

五、布置作业。

课本P35第6、8、9题。

《比的应用》教学设计2

教材分析:分数连除和乘除复合应用题”这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位“1”和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。

在设计“授新课”部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的“引”和“放”,以培养学生分析问题和解答问题的能力。

本节课计算是次,分析列式是主,所以在设计“练兵场1、2”时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。

巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位“1”,目的在于和前面的题目和解法形成对比,使学生养成认真分析数量关系的好习惯。

小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后“优化算法”。当然在教学的实施过 ……此处隐藏15967个字……什么不舍去?

答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。

3、选出三种方法中最简单的一种。

练习

1、两个连续整数的积是210,求这两个数。

2、三个连续奇数的和是321,求这三个数。

3、已知两个数的和是12,积为23,求这两个数。

学生板书,练习,回答,评价,深刻体会方程的思想方法。例2有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。

分析:数与数字的关系是:

两位数=十位数字×10+个位数字。

三位数=百位数字×100+十位数字×10+个位数字。

解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x。

据题意,得10(x-2)+x=3x(x-2),整理,得3x2-17x+20=0,

当x=4时,x-2=2,10(x-2)+x=24。

答:这个两位数是24。

练习1有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35,53)

2、一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。

教师引导,启发,学生笔答,板书,评价,体会。

(四)总结,扩展

1、奇数的表示方法为2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数。

数与数字的关系

两位数=(十位数字×10)+个位数字。

三位数=(百位数字×100)+(十位数字×10)+个位数字。

……

2、通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途。

四、布置作业

教材P.42中A1、2、

《比的应用》教学设计15

教学目标

知识与能力

1.使学生在掌握稍复杂的求一个数的几分之几是多少的分数应用题的基础上,利用其数量关系列方程解答稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题。

2.在分析解答的过程中拓宽学生的思维空间,培养学生分析问题的能力。

过程与方法

理解稍复杂的已知一个数的几分之几是多少,求这个数的应用题的数量关系。

情感态度与价值观

1.会列方程解答这类应用题.

2.培养学生分析推理能力.

教学重点

分析应用题的数量关系.

教学难点

找应用题的等量关系.

教学过程

一、复习旧知.

小红买来一袋大米重40千克,吃了,还剩多少千克?

1.画图理解题意

2.指名叙述解答过程.

3.列式解答40-40× 40×(1-)

教师小结:解答分数应用题,关键是找准单位“1”,如果单位“1”是已知的,求它的几分之几是多少,就可以根据一个数乘分数的意义直接用乘法计算。

二、探究新知.

(一)变式引出例

例6.小红买来一袋大米,吃了,还剩15千克买来大米多少千克?

1.读题

2.画线段图

3.分析数量关系,列方程.

4.教师提问:题中表示等量关系的三个量是什么?可以怎样列方程?

(1)解:设买来大米千克.

买来大米的重量-吃了的重量=剩下的重量

(2)买来大米的重量×剩下几分之几=剩下的重量

学生自己解方程并检验.

答:这袋大米重40千克.

(二)归纳总结.

例6中的单位“1”是未知的,而已知剩下的量和吃了的分率,要求的恰好是单位“1”的重量,所以不能直接用乘法直接乘,可以列方程解答.或是找准和已知量相对应的分率用除法解答。

出示例7。

烧煤多少吨?

读题,找出已知条件和所求问题。

画图分析解答。

①从这个条件可以看出题中是几个数量相比?(两个数量相比。

追问:哪两个?(四月份实际烧煤量和四月份计划烧煤量。

我们应把哪个数量看作单位“1”?为什么?(把原计划烧煤量看作单位“1”。因为和它相比,以它为标准,所以把它看作单位“1”。

②画图时我们要用两条线段表示两个数量,先画谁呢?(先画原计划烧煤吨数。

下一步画什么?(实际烧煤吨数。

指名回答:把计划烧煤量看作单位“1”,平均分成9份,实际比计划节约的烧煤量相当于这样的1份,即节约的烧煤量占计划烧煤量的这两条线段谁为已知?谁为未知?

在提问回答的过程中教师板演线段图:

③指图提问:计划烧煤量与实际烧煤量之间有什么样的等量关系?

计划烧煤吨数-节约吨数=实际烧煤吨数。

计划烧煤吨数未知怎么办?(设计划烧煤吨数为x,用方程解答。

④试做在练习本上。

⑤反馈:说说你的解答方法及依据。

解设四月份原计划烧煤x吨。

答:四月份原计划烧煤135吨。

学生独立画图分析并列式解答。

反馈提问:

②你用什么方法解答的?依据的等量关系式是什么?

三)课堂总结

今天我们学习的例6、例7与前边学过的分数应用题相比有什么相同点?有什么不同点?

数量间的等量关系相同,解答方法不同。

三、巩固练习

(一)找出下面各题的等量关系和对应关系.

1.某修路除要修一条路,已经修了全长的,还剩240米没修,这条路全长是多少米?

等量关系:

一条路的长度-已经修的米数=没修的米数

一条路的长度×没修的分率=没修的米数

对应关系:

剩的米数÷剩下的分率=全长的米数

一根电线杆,埋在地下的部分是全长的,露地面的部分是5米.这根电线杆长多少米?

选择正确的列式.

一个畜牧场卖出肉牛头数的,还剩300头,这个畜牧场共有肉牛多少头?正确列式是()

解:设共有肉牛()头。

四)巩固反馈

课本第76页的第2题。

根据列式补充条件:

五)布置作业

课本第76页第1,3题。

课堂教学设计说明

本节课的内容是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。

《《比的应用》教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式